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1. Introduction

This talk is based on the recent research below.

When are the rings I : I Gorenstein?, arXiv:2111.13338
(with S. Goto, S.-i. Iai, and N. Matsuoka)

Let (R,m) be a Noetherian local ring with depthR > 0.

Problem 1.1

When is EndR(m) = m : m Gorenstein?
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If dimR = 1, then

m : m is a Gorenstein ring ⇐⇒ R is almost Gorenstein ring and v(R) = e(R)

If dimR ≥ 2, then depthR ≥ 2 if and only if m : m = R.

Hence, provided depthR ≥ 2,

m : m is a Gorenstein ring ⇐⇒ R is a Gorenstein ring.

How about the case where dimR ≥ 2 and depthR = 1?

Key ideas

(S2)-ifications

trace ideals
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2. Basic results on (S2)-ifications

Throughout this talk, let

R an arbitrary commutative Noetherian ring

Q(R) the total ring of fractions of R

Ht≥2(R) = {I | I is an ideal of R, htR I ≥ 2}

W (R) = {a ∈ R | a is a non-zerodivisor on R}

We fix a Q(R)-module V and an R-submodule M of V .

Define

M ⊆ M̃ = {f ∈ V | If ⊆ M for some I ∈ Ht≥2(R)} ⊆ V .

If L is an R-submodule of V and M ⊆ L, then M̃ ⊆ L̃.

R̃ considered inside Q(R) is an intermediate ring R ⊆ R̃ ⊆ Q(R).

M̃ is an R̃-submodule of V .
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Let a, b ∈ R and N an R-module. The pair a, b is called N-sequence, if

a is a N-NZD and b is a N/aN-NZD.

Here, we don’t require N/(a, b)N 6= (0).

Lemma 2.1

Let a, b ∈ W (R). If htR(a, b) ≥ 2, then the pair a, b is M̃-sequence.

(Proof) Let f ∈ M̃ and assume bf = ag for some g ∈ M̃. Set x = f
a = g

b , and
choose I , J ∈ Ht≥2(R) so that If + Jg ⊆ M. Then

(Ia+ Jb)x ⊆ M

whence x ∈ M̃ because Ia+ Jb ∈ Ht≥2(R).
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Proposition 2.2

Suppose that one of the following conditions is satisfied.

(1) Q(R)M = V .

(2) htR p ≤ 1 for ∀p ∈ AssR.

Then

M = M̃ ⇐⇒ every pair a, b ∈ W (R) with htR(a, b) ≥ 2 is M-sequence.

(Proof) Assume M 6= M̃ and consider Z = M̃/M. Let p ∈ AssR Z and write

p = M :R f for some f ∈ M̃ \M. Choose I ∈ Ht≥2(R) s.t. If ⊆ M. Then I ⊆ p.
Notice that

af ∈ M for some a ∈ W (R).

Therefore, htR(a, b) ≥ 2 for some b ∈ W (R) ∩ p, whence a, b is M-sequence. So

0 → (0) :Z a
σ→ M/aM → M̃/aM̃ → Z/aZ → 0

where bσ(f ) = σ(bf ) = 0, because bf ∈ M. Thus σ(f ) = 0, so that f ∈ M. This
is impossible.
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Corollary 2.3

Suppose that one of the following conditions is satisfied.

(1) Q(R)M = V .

(2) htR p ≤ 1 for ∀p ∈ AssR.

Then the following assertions hold true.

(a)
˜̃
M = M̃.

(b) Let M ⊆ L ⊆ V be an R-submodule of V . If every pair a, b ∈ W (R) with

htR(a, b) ≥ 2 is L-sequence, then M̃ ⊆ L̃ = L.
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Recall that a finitely generated R-module N satisfies (Sn), if

depthRp
Np ≥ min{n, dimRp} for ∀p ∈ SuppR N.

Theorem 2.4

Suppose R satisfies (S1). If M̃ is a finitely generated R-module, then M̃ is the
smallest R-submodule of V which contains M and satisfies (S2).

Corollary 2.5

Suppose R satisfies (S1). If R̃ is a finitely generated R-module, then R̃ is the
smallest module-finite birational extension of R satisfying (S2).

Corollary 2.6

If R satisfies (S2), then R = R̃.
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In the rest of this section, we assume

M is a finitely generated R-module,

Q(R)M = V , and

(0) :Q(R) V = (0).

Note that, every f ∈ V has the form f = m
a with a ∈ W (R) and m ∈ M.

Let a ∈ W (R) and let

aM =
⋂

p∈AssR M/aM

Q(p)

be a primary decomposition of aM in M. Set

U(aM) =

{
M if aM = M,⋂

p∈MinR M/aM Q(p) if aM 6= M.
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Theorem 2.7

Let a ∈ W (R) and m ∈ M. Then m
a ∈ M̃ if and only if m ∈ U(aM).

(Proof) May assume aM 6= M. Suppose m
a ∈ M̃ and choose I ∈ Ht≥2(R) so that

I ⊆ aM :R m. Let p ∈ MinR M/aM. Since htR p = 1, aM :R m 6⊆ p, whence

m ∈ [aM]p ∩M = Q(p).

Hence, m ∈ U(aM).

Conversely, suppose m ∈ U(aM). If aM = U(aM), then m ∈ aM, so m
a ∈ M̃.

May assume aM 6= U(aM). Consider F = (AssR M/aM) \ (MinR M/aM). Then,
F 6= ∅ and for each p ∈ F ,

∃ ℓ = ℓ(p) � 0 s.t. pℓM ⊆ Q(p).

By setting a =
∏

p∈F pℓ(p) ∈ Ht≥2(R), we have

aU(aM) ⊆
⋂
p∈F

Q(p) ∩ U(aM) = aM.

Hence U(aM)
a ⊆ M̃, as desired.

Therefore, if M̃ ⊆ M
a for some a ∈ W (R), then M̃ = U(aM)

a .

Naoki Endo (Tokyo University of Science) When are the rings I : I Gorenstein? March 21, 2022 10 / 29



1. Introduction 2. Basic results on (S2)-ifications 3. Trace ideals 4. Main results 5. Gorenstein Rees algebras 6. Examples

3. Trace ideals

Let M,X be R-modules. Consider the homomorphism

τ : HomR(M,X )⊗R M → X , f ⊗m 7→ f (m)

where f ∈ HomR(M,X ) and m ∈ M.

We set TrX (M) = Im τ and call it the trace module of M in X .

Proposition 3.1 (Lindo)

Let I be an ideal of R. Then TFAE.

(1) I is a trace ideal in R, i.e., I = TrR(M) for some R-module M.

(2) I = TrR(I ).

(3) The embedding ι : I → R induces HomR(I , I ) ∼= HomR(I ,R).

When I contains a non-zerodivisor on R, one can add the following.

(4) I : I = R : I .
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4. Main results

For a Noetherian local ring (A,m), we set

AsshA := {p ∈ SpecA | dimA/p = dimA} ⊆ MinA ⊆ AssA.

Recall that A is unmixed (quasi-unmixed), if Ass Â = Assh Â (Min Â = Assh Â).

Lemma 4.1

Let A be a Noetherian ring. Let A ⊆ B ⊆ Q(A) be a subring of Q(A) s.t. B is a
finitely generated A-module. Let I be an ideal of B s.t. I ⊆ A and htA I ≥ 2. If A
is locally quasi-unmixed and B satisfies (S2), then I is a trace ideal in A and
B = I : I .

(Proof) Since A is locally quasi-unmixed, htB P = htA(P ∩ A) for ∀P ∈ SpecB,
so that htB I ≥ 2, whence gradeB I ≥ 2 because B satisfies (S2). Therefore,
B = I : I , so that

A : I ⊆ B : I = B = I : I ⊆ A : I .

This implies I : I = A : I . Hence I is a trace ideal in A.
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Proposition 4.2

Let A be a Noetherian local ring and I (6= A) an ideal of A with htA I ≥ 2.
Assume that ∃KA and there exists an exact sequence

0 → A → KA → C → 0 s.t. IC = (0).

Then the following assertions hold true.

(1) Ã ∼= KA as an A-module.

(2) HomA(Ã,KA) ∼= Ã as an Ã-module.

(3) If KA is a CM A-module, then Ã is a Gorenstein ring.

(4) If I is a trace ideal in A, then Ã = I : I .

(Proof) (1), (2) Let p ∈ AssA. Then I 6⊆ p because p ∈ AssA KA = AsshA, so
that Cp = (0) and

Ap
∼= (KA)p ∼= K(Ap) .

Hence Q(A) is a Gorenstein ring.
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We choose

an A-submodule K of Q(A) s.t. K ∼= KA as an A-module.

Thus Q(A)K = Q(A). By taking the K -dual of 0 → A
φ→ K → C → 0, we get

ψ : K : K = HomA(K ,K )

φ∗

∼=−→ HomA(A,K ) = K where ψ(1) = φ(1).

Hence, Ã ∼= KA as an A-module, because Ã = K : K by Aoyama-Goto. Besides,
since ψ(1) = φ(1), (K : K )/A ∼= C as an A-module, so that

I Ã = I (K : K ) ⊆ A.

Notice that Ã ∼= K as an Ã-module, so K = αÃ for some invertible α ∈ Q(A).
Therefore

K : Ã = αÃ : Ã = α[Ã : Ã] = αÃ = K .

(3) As depthA Ã = dimA, every sop of A forms a regular sequence on Ã, whence

htÃ M = dimA for ∀M ∈ Max Ã, so that ÃM is a Gorenstein ring.

(4) Suppose I is a trace ideal in A and set B = I : I . Since I Ã ⊆ A, we have

Ã ⊆ A : I = B, while B ⊆ Ã, since IB = I ⊆ A and htA I ≥ 2. Thus Ã = I : I .
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Corollary 4.3

Let (A,m) be a Noetherian local ring with d = dimA. Let A ⊆ B ⊆ Q(A) be a
subring of Q(A) s.t. B is a finitely generated A-module. We set a = A : B and
assume the following.

(1) A is a quasi-unmixed ring.

(2) htA a ≥ 2.

(3) B is a Gorenstein ring.

Then the following assertions hold true.

(a) B = Ã, depthA B = d, a is a trace ideal in A, and B = a : a.

(b) ∃KA and KA
∼= B as an A-module.

(c) A = B if and only if A is a CM local ring.
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(Proof) We have B = a : a and a is a trace ideal in A. Since htB M = htA m = d
for ∀M ∈ MaxB, every sop of A forms a regular sequence on BM , so that it forms
a regular sequence on B. Hence, depthA B = d .

Let C = B/A. Then dimA C ≤ d − 2 since aC = (0), so that

Hd
m(A)

∼= Hd
m(B).

Therefore, KÂ
∼= Â⊗A B as an Â-module, whence

∃KA and KA
∼= B as an A-module.

We have B ⊆ Ã since htA a ≥ 2, while Ã ⊆ B̃ = B. Hence, B = Ã.

Suppose A is a CM ring. Then depthA C ≥ d − 1, which forces C = (0) because
dimA C ≤ d − 2. Hence, A = B.
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Theorem 4.4 (Main theorem)

Let A be a Noetherian local ring with d = dimA ≥ 2. Suppose that A is quasi
-unmixed. Let I ( 6= A) be an ideal of A with htA I ≥ 2 and I ∩W (A) 6= ∅. Set
B = I : I . Then TFAE.

(1) B is a Gorenstein ring.

(2) ∃KA and I is a trace ideal in A s.t. (i) KA is a CM A-module and (ii) there
exists an exact sequence

0 → A → KA → C → 0 s.t. IC = (0).

(3) depthA B = d, ∃KA, and B ∼= KA as an A-module.

When this is the case, A is unmixed, B = Ã, and a = A : B is a trace ideal in A
with B = a : a.
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Corollary 4.5

Let A be a Noetherian local ring with d = dimA ≥ 2. Let I (6= A) be an ideal of
A with htA I ≥ 2 and I ∩W (A) 6= ∅. Set B = I : I . Then TFAE.

(1) B is a Gorenstein ring, A is a homomorphic image of a CM ring, and
MinA = AsshA.

(2) ∃KA and I is a trace ideal in A s.t. (i) KA is a CM A-module and (ii) there
exists an exact sequence

0 → A → KA → C → 0 s.t. IC = (0).

(3) depthA B = d, ∃KA, and B ∼= KA as an A-module.

When this is the case, A is unmixed, B = Ã, and a = A : B is a trace ideal in A
with B = a : a.
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5. Gorenstein Rees algebras

Let (A,m) be a Noetherian local ring with d = dimA ≥ 2 and t = depthA ≥ 1.

For each ideal I of A, we set

RA(I ) = A[It] =
∑
n≥0

I ntn ⊆ A[t]

and call it the Rees algebra of I .

Example 5.1 (Hochster-Roberts)

Let A = k[[x2, y , x3, xy ]] ⊆ k[[x , y ]] and Q = (x2, y). Then A is not CM, but

RA(Q
2) = A[Q2t] = A[x4t, x2yt, y2t] ⊆ A[t]

is a Gorenstein ring.
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Theorem 5.2 (Shimoda)

Suppose dimA = 2 and depthA = 1. Let Q = (a, b) be a parameter ideal of A.
Then TFAE.

(1) RA(Q
2) is a Gorenstein ring.

(2) (a) a, b ∈ W (A),
(b) [(a) : b] ∩ [(b) : a] = (a) ∩ (b), and
(c) A/[(ab) + a[(a) : b] + b[(b) : a]] is a Gorenstein ring.

Question 5.3

Let Q be a parameter ideal of A. When is RA(Q
d) a Gorenstein ring?

If A is a CM local ring, then RA(Q
d) is NOT a Gorenstein ring.

(Goto-Nishida, Goto-Shimoda, Ikeda)
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Theorem 5.4 (Goto-Iai)

Suppose Hi
m(A) = (0) for ∀i 6∈ {1, d} and H1

m(A) is a finitely generated
A-module. Let Q = (a1, a2, . . . , ad) be a parameter ideal of A. Then TFAE.

(1) RA(Q
d) is a Gorenstein ring.

(2) H1
m(A) 6= (0), rA(H

1
m(A)) = 1, and (0) :A H1

m(A) =
∑d

i=1 U(aiA).

When this is the case, Ã is a Gorenstein ring.
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Theorem 5.5

Let (A,m) be a Noetherian complete local ring s.t. d = dimA ≥ 2, depthA = 1,
and MinA = AsshA. Let I be an m-primary ideal of A. We set B = I : I and
a = A : B, and assume the following conditions.

(1) B is a Gorenstein ring.

(2) A 6= B and rA(B/A) = 1

(3) a = (a1, a2, . . . , ad)B for some a1, a2, . . . , ad ∈ m.

Then, B = a : a and RA(Q
d) is a Gorenstein ring, where Q = (a1, a2, . . . , ad).
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(Proof) We have B = a : a. As I ·(B/A) = (0), applying Hi
m(∗) to the sequence

0 → A → B → B/A → 0

we get H1
m(A)

∼= B/A and Hi
m(A) = (0) for ∀i 6∈ {1, d}. Hence

(0) :A H1
m(A) = a and rA(H

1
m(A)) = 1.

Since depthA B = d and a1, a2, . . . , ad forms a system of parameters in A, the
sequence a1, a2, . . . , ad is B-regular. Hence

ai ∈ W (A) and aiB ⊆ A for 1 ≤ ∀i ≤ d

so that B = Ã ⊆ A
ai
, whence B = U(aiA)

ai
. Hence

a =
d∑

i=1

aiB =
d∑

i=1

U(aiA).

Consequently, RA(Q
d) is a Gorenstein ring.
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6. Examples

Let

(S , n) a Gorenstein complete local ring with d = dim S ≥ 2

S contains a field k

q = (a1, a2, . . . , ad) a parameter ideal of S s.t. q 6= n

A = k + q

Then, A is a subring of S , and q is a maximal ideal in A. We have

ℓA(S/A) = ℓA(S/q)− 1 <∞.

Therefore, S is a finitely generated A-module, so that

A is a Noetherian complete local ring with dimA = d and depthA = 1.

Theorem 6.1

If ℓS(S/q) = 2, then RA(Q
d) is a Gorenstein ring, where Q = (a1, a2, . . . , ad)A.
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Example 6.2

Let S = k[[X1,X2, . . . ,Xd ]] (d ≥ 2) and q = (X 2
1 ,X2, . . . ,Xd)S . Then

RA(Q
d) is a Gorenstein ring

where A = k + q and Q = (X 2
1 ,X2, . . . ,Xd)A.
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Let

B = k[[t, s]] the formal power series ring over a field k

P = k[[H]] ⊊ V = k[[t]], where H is a symmetric numerical semigroup

c = P : V = tcV , 0 < c ∈ H

A = P + sB ⊆ B

a = A : B = c+ sB = (tc , s)B

Then

A is a Noetherian complete local ring with dimA = 2 and depthA = 1.

We set Q = (tc , s). Then, Q is a parameter ideal of A.

Theorem 6.3

The Rees algebra RA(Q
2) is a Gorenstein ring.
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Let

S a Gorenstein complete local ring with d = dim S ≥ 2

q = (a1, a2, . . . , ad) a parameter ideal of S

A = S ×S/q S = {(x , y) ∈ S × S | x ≡ y mod q}

Then

A is a Noetherian complete local ring with dimA = d and depthA = 1

Let αi = (ai , ai ) ∈ A for each 1 ≤ i ≤ d and set Q = (α1, α2, . . . , αd). Then, Q
is a parameter ideal of A.

Theorem 6.4

The Rees algebra RA(Q
d) is a Gorenstein ring.
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Example 6.5

Let U = k[[X1,X2, . . . ,Xd ,Y1,Y2, . . . ,Yd ]] (d ≥ 2) and set

A = U/[(X1,X2, . . . ,Xd) ∩ (Y1,Y2, . . . ,Yd)] ∼= S ×k S

where S = k[[X1,X2, . . . ,Xd ]].

For each 1 ≤ i ≤ d , let zi denote the image of Xi + Yi in A. Then

RA(Q
d) is a Gorenstein ring

where Q = (z1, z2, . . . , zd).
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Thank you for your attention.
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