The Gorensteinness of the endomorphism rings of ideals

Naoki Endo

Tokyo University of Science

based on the recent works jointly with

S. Goto, S.-i. lai, and N. Matsuoka

特異点論月曜セミナー

March 21, 2022

1. Introduction

This talk is based on the recent research below.

 When are the rings I : I Gorenstein?, arXiv:2111.13338 (with S. Goto, S.-i. Iai, and N. Matsuoka)

Let (R, \mathfrak{m}) be a Noetherian local ring with depth R > 0.

Problem 1.1

When is $End_R(\mathfrak{m}) = \mathfrak{m} : \mathfrak{m}$ Gorenstein?

• If dim R = 1, then

 $\mathfrak{m} : \mathfrak{m}$ is a Gorenstein ring $\iff R$ is almost Gorenstein ring and v(R) = e(R)

 If dim R ≥ 2, then depth R ≥ 2 if and only if m : m = R. Hence, provided depth R ≥ 2,

 $\mathfrak{m} : \mathfrak{m}$ is a Gorenstein ring $\iff R$ is a Gorenstein ring.

How about the case where dim $R \ge 2$ and depth R = 1?

Key ideas

- (S₂)-ifications
- trace ideals

• If dim R = 1, then

 $\mathfrak{m} : \mathfrak{m}$ is a Gorenstein ring $\iff R$ is almost Gorenstein ring and v(R) = e(R)

 If dim R ≥ 2, then depth R ≥ 2 if and only if m : m = R. Hence, provided depth R ≥ 2,

 $\mathfrak{m} : \mathfrak{m}$ is a Gorenstein ring $\iff R$ is a Gorenstein ring.

How about the case where dim $R \ge 2$ and depth R = 1?

Key ideas

- (S₂)-ifications
- trace ideals

2. Basic results on (S_2) -ifications

Throughout this talk, let

- R an arbitrary commutative Noetherian ring
- Q(R) the total ring of fractions of R
- $\operatorname{Ht}_{\geq 2}(R) = \{I \mid I \text{ is an ideal of } R, \operatorname{ht}_R I \geq 2\}$
- $W(R) = \{a \in R \mid a \text{ is a non-zerodivisor on } R\}$

We fix a Q(R)-module V and an R-submodule M of V.

Define

 $M \subseteq \widetilde{M} = \{f \in V \mid If \subseteq M \text{ for some } I \in Ht_{\geq 2}(R)\} \subseteq V.$

- If L is an R-submodule of V and $M \subseteq L$, then $\widetilde{M} \subseteq \widetilde{L}$.
- \widetilde{R} considered inside Q(R) is an intermediate ring $R \subseteq \widetilde{R} \subseteq Q(R)$.
- \widetilde{M} is an \widetilde{R} -submodule of V.

Let $a, b \in R$ and N an R-module. The pair a, b is called N-sequence, if

a is a N-NZD and b is a N/aN-NZD.

Here, we don't require $N/(a, b)N \neq (0)$.

Lemma 2.1

Let $a, b \in W(R)$. If $ht_R(a, b) \ge 2$, then the pair a, b is M-sequence.

(Proof) Let $f \in \widetilde{M}$ and assume bf = ag for some $g \in \widetilde{M}$. Set $x = \frac{f}{a} = \frac{g}{b}$, and choose $I, J \in \operatorname{Ht}_{\geq 2}(R)$ so that $If + Jg \subseteq M$. Then

 $(Ia + Jb)x \subseteq M$

whence $x \in M$ because $Ia + Jb \in Ht_{\geq 2}(R)$.

Proposition 2.2

Suppose that one of the following conditions is satisfied.

(1)
$$Q(R)M = V$$
.

(2) $\operatorname{ht}_{R} \mathfrak{p} \leq 1$ for $\forall \mathfrak{p} \in \operatorname{Ass} R$.

Then

 $M = \widetilde{M} \iff$ every pair $a, b \in W(R)$ with $ht_R(a, b) \ge 2$ is M-sequence.

(Proof) Assume $M \neq \widetilde{M}$ and consider $Z = \widetilde{M}/M$. Let $\mathfrak{p} \in \operatorname{Ass}_R Z$ and write $\mathfrak{p} = M :_R f$ for some $f \in \widetilde{M} \setminus M$. Choose $I \in \operatorname{Ht}_{\geq 2}(R)$ s.t. $If \subseteq M$. Then $I \subseteq \mathfrak{p}$. Notice that

 $af \in M$ for some $a \in W(R)$.

Therefore, $ht_R(a, b) \ge 2$ for some $b \in W(R) \cap \mathfrak{p}$, whence a, b is *M*-sequence. So

$$0
ightarrow (0):_{Z} a \stackrel{\sigma}{
ightarrow} M/aM
ightarrow \widetilde{M}/a\widetilde{M}
ightarrow Z/aZ
ightarrow 0$$

where $b\sigma(\overline{f}) = \sigma(\overline{bf}) = 0$, because $bf \in M$. Thus $\sigma(\overline{f}) = 0$, so that $f \in M$. This is impossible.

Corollary 2.3

Suppose that one of the following conditions is satisfied.

- (1) Q(R)M = V.
- (2) $\operatorname{ht}_{R}\mathfrak{p} \leq 1$ for $\forall \mathfrak{p} \in \operatorname{Ass} R$.

Then the following assertions hold true.

(a)
$$\widetilde{\widetilde{M}} = \widetilde{M}$$
.

(b) Let $M \subseteq L \subseteq V$ be an *R*-submodule of *V*. If every pair $a, b \in W(R)$ with $ht_R(a, b) \ge 2$ is *L*-sequence, then $\widetilde{M} \subseteq \widetilde{L} = L$.

Recall that a finitely generated R-module N satisfies (S_n) , if

$$\operatorname{depth}_{R_{\mathfrak{p}}} N_{\mathfrak{p}} \geq \min\{n, \dim R_{\mathfrak{p}}\} \text{ for } \forall \mathfrak{p} \in \operatorname{Supp}_{R} N.$$

Theorem 2.4

Suppose R satisfies (S_1) . If \tilde{M} is a finitely generated R-module, then \tilde{M} is the smallest R-submodule of V which contains M and satisfies (S_2) .

Corollary 2.5

Suppose R satisfies (S_1) . If \tilde{R} is a finitely generated R-module, then \tilde{R} is the smallest module-finite birational extension of R satisfying (S_2) .

Corollary 2.6

If R satisfies (S_2) , then $R = \widetilde{R}$.

In the rest of this section, we assume

- *M* is a finitely generated *R*-module,
- Q(R)M = V, and
- (0) : $_{Q(R)} V = (0).$

Note that, every $f \in V$ has the form $f = \frac{m}{a}$ with $a \in W(R)$ and $m \in M$.

Let $a \in W(R)$ and let

$$aM = igcap_{\mathfrak{p}\in\mathsf{Ass}_{\mathcal{R}}\,M/aM}Q(\mathfrak{p})$$

be a primary decomposition of aM in M. Set

$$U(aM) = \begin{cases} M & \text{if } aM = M, \\ \bigcap_{\mathfrak{p} \in \operatorname{Min}_R M/aM} Q(\mathfrak{p}) & \text{if } aM \neq M. \end{cases}$$

Theorem 2.7

Let
$$a\in W(R)$$
 and $m\in M.$ Then $rac{m}{a}\in \widetilde{M}$ if and only if $m\in {\sf U}(aM).$

(Proof) May assume $aM \neq M$. Suppose $\frac{m}{a} \in \widetilde{M}$ and choose $I \in \operatorname{Ht}_{\geq 2}(R)$ so that $I \subseteq aM :_R m$. Let $\mathfrak{p} \in \operatorname{Min}_R M/aM$. Since $\operatorname{ht}_R \mathfrak{p} = 1$, $aM :_R m \not\subseteq \mathfrak{p}$, whence $m \in [aM]_{\mathfrak{p}} \cap M = Q(\mathfrak{p})$.

Hence, $m \in U(aM)$.

Conversely, suppose $m \in U(aM)$. If aM = U(aM), then $m \in aM$, so $\frac{m}{a} \in \tilde{M}$. May assume $aM \neq U(aM)$. Consider $\mathcal{F} = (Ass_R M/aM) \setminus (Min_R M/aM)$. Then, $\mathcal{F} \neq \emptyset$ and for each $\mathfrak{p} \in \mathcal{F}$,

 $\exists \ \ell = \ell(\mathfrak{p}) \gg 0$ s.t. $\mathfrak{p}^{\ell} M \subseteq Q(\mathfrak{p}).$

By setting $\mathfrak{a} = \prod_{\mathfrak{p} \in \mathcal{F}} \mathfrak{p}^{\ell(\mathfrak{p})} \in Ht_{\geq 2}(R)$, we have

 $\mathfrak{a} \ \mathsf{U}(aM) \subseteq \bigcap_{\mathfrak{p} \in \mathcal{F}} Q(\mathfrak{p}) \cap \mathsf{U}(aM) = aM.$ Hence $\frac{\mathsf{U}(aM)}{a} \subseteq \widetilde{M}$, as desired. Therefore, if $\widetilde{M} \subseteq \frac{M}{a}$ for some $a \in W(R)$, then $\widetilde{M} = \frac{\mathsf{U}(aM)}{\langle a \rangle \langle a$

3. Trace ideals

Let M, X be R-modules. Consider the homomorphism

$$au : \operatorname{Hom}_R(M,X) \otimes_R M o X, \ f \otimes m \mapsto f(m)$$

where $f \in \text{Hom}_R(M, X)$ and $m \in M$.

We set $\operatorname{Tr}_X(M) = \operatorname{Im} \tau$ and call it the trace module of M in X.

Proposition 3.1 (Lindo)

Let I be an ideal of R. Then TFAE. (1) I is a trace ideal in R, i.e., $I = \text{Tr}_R(M)$ for some R-module M. (2) $I = \text{Tr}_R(I)$. (3) The embedding $\iota : I \to R$ induces $\text{Hom}_R(I, I) \cong \text{Hom}_R(I, R)$. When I contains a non-zerodivisor on R, one can add the following. (4) I : I = R : I.

4. Main results

For a Noetherian local ring (A, \mathfrak{m}) , we set

 $\operatorname{Assh} A := \{ \mathfrak{p} \in \operatorname{Spec} A \mid \dim A/\mathfrak{p} = \dim A \} \subseteq \operatorname{Min} A \subseteq \operatorname{Ass} A.$

Recall that A is unmixed (quasi-unmixed), if Ass $\widehat{A} = \operatorname{Assh} \widehat{A}$ (Min $\widehat{A} = \operatorname{Assh} \widehat{A}$).

Lemma 4.1

Let A be a Noetherian ring. Let $A \subseteq B \subseteq Q(A)$ be a subring of Q(A) s.t. B is a finitely generated A-module. Let I be an ideal of B s.t. $I \subseteq A$ and $ht_A I \ge 2$. If A is locally quasi-unmixed and B satisfies (S_2) , then I is a trace ideal in A and B = I : I.

(Proof) Since A is locally quasi-unmixed, $ht_B P = ht_A(P \cap A)$ for $\forall P \in \text{Spec } B$, so that $ht_B I \ge 2$, whence $\text{grade}_B I \ge 2$ because B satisfies (S_2) . Therefore, B = I : I, so that

$$A: I \subseteq B: I = B = I: I \subseteq A: I.$$

This implies I : I = A : I. Hence I is a trace ideal in $A_{\Box} \rightarrow A_{\Box} \rightarrow A_$

Proposition 4.2

Let A be a Noetherian local ring and I (\neq A) an ideal of A with ht_A I \geq 2. Assume that $\exists K_A$ and there exists an exact sequence

 $0 \rightarrow A \rightarrow K_A \rightarrow C \rightarrow 0$ s.t. IC = (0).

Then the following assertions hold true.

- (1) $\widetilde{A} \cong K_A$ as an A-module.
- (2) $\operatorname{Hom}_{A}(\widetilde{A}, K_{A}) \cong \widetilde{A}$ as an \widetilde{A} -module.
- (3) If K_A is a CM A-module, then \widetilde{A} is a Gorenstein ring.
- (4) If I is a trace ideal in A, then $\widetilde{A} = I : I$.

(Proof) (1), (2) Let $\mathfrak{p} \in Ass A$. Then $I \not\subseteq \mathfrak{p}$ because $\mathfrak{p} \in Ass_A K_A = Assh A$, so that $C_{\mathfrak{p}} = (0)$ and

$$A_{\mathfrak{p}}\cong (\mathsf{K}_{\mathcal{A}})_{\mathfrak{p}}\cong \mathsf{K}_{(\mathcal{A}_{\mathfrak{p}})}$$
.

Hence Q(A) is a Gorenstein ring.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ● ●

We choose

an A-submodule K of Q(A) s.t. $K \cong K_A$ as an A-module.

Thus Q(A)K = Q(A). By taking the K-dual of $0 \rightarrow A \xrightarrow{\phi} K \rightarrow C \rightarrow 0$, we get

$$\psi: K: K = \operatorname{Hom}_{\mathcal{A}}(K, K) \xrightarrow{\psi}{\cong} \operatorname{Hom}_{\mathcal{A}}(\mathcal{A}, K) = K \text{ where } \psi(1) = \varphi(1).$$

Hence, $\widetilde{A} \cong K_A$ as an A-module, because $\widetilde{A} = K : K$ by Aoyama-Goto. Besides, since $\psi(1) = \varphi(1)$, $(K : K)/A \cong C$ as an A-module, so that

$$I\widetilde{A} = I(K:K) \subseteq A.$$

Notice that $\widetilde{A} \cong K$ as an \widetilde{A} -module, so $K = \alpha \widetilde{A}$ for some invertible $\alpha \in Q(A)$. Therefore

$$K:\widetilde{A}=\alpha\widetilde{A}:\widetilde{A}=\alpha[\widetilde{A}:\widetilde{A}]=\alpha\widetilde{A}=K.$$

(3) As depth_A $\widetilde{A} = \dim A$, every sop of A forms a regular sequence on \widetilde{A} , whence $\operatorname{ht}_{\widetilde{A}} M = \dim A$ for $\forall M \in \operatorname{Max} \widetilde{A}$, so that \widetilde{A}_M is a Gorenstein ring. (4) Suppose I is a trace ideal in A and set B = I : I. Since $I\widetilde{A} \subseteq A$, we have $\widetilde{A} \subseteq A : I = B$, while $B \subseteq \widetilde{A}$, since $IB = I \subseteq A$ and $\operatorname{ht}_A I \ge 2$. Thus $\widetilde{A} = I : I$.

14 / 29

Corollary 4.3

Let (A, \mathfrak{m}) be a Noetherian local ring with $d = \dim A$. Let $A \subseteq B \subseteq Q(A)$ be a subring of Q(A) s.t. B is a finitely generated A-module. We set $\mathfrak{a} = A : B$ and assume the following.

- (1) A is a quasi-unmixed ring.
- (2) $\operatorname{ht}_A \mathfrak{a} \geq 2$.
- (3) B is a Gorenstein ring.

Then the following assertions hold true.

- (a) $B = \widetilde{A}$, depth_A B = d, \mathfrak{a} is a trace ideal in A, and $B = \mathfrak{a} : \mathfrak{a}$.
- (b) $\exists K_A \text{ and } K_A \cong B \text{ as an } A\text{-module.}$
- (c) A = B if and only if A is a CM local ring.

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

(Proof) We have $B = \mathfrak{a} : \mathfrak{a}$ and \mathfrak{a} is a trace ideal in A. Since $ht_B M = ht_A \mathfrak{m} = d$ for $\forall M \in Max B$, every sop of A forms a regular sequence on B_M , so that it forms a regular sequence on B. Hence, depth_A B = d.

Let C = B/A. Then dim_A $C \le d - 2$ since $\mathfrak{a}C = (0)$, so that

 $H^d_{\mathfrak{m}}(A) \cong H^d_{\mathfrak{m}}(B).$

Therefore, $\mathsf{K}_{\widehat{A}} \cong \widehat{A} \otimes_A B$ as an \widehat{A} -module, whence

 $\exists K_A \text{ and } K_A \cong B \text{ as an } A\text{-module.}$

We have $B \subseteq \widetilde{A}$ since $ht_A \mathfrak{a} \ge 2$, while $\widetilde{A} \subseteq \widetilde{B} = B$. Hence, $B = \widetilde{A}$. Suppose A is a CM ring. Then $depth_A C \ge d - 1$, which forces C = (0) because $\dim_A C \le d - 2$. Hence, A = B.

Theorem 4.4 (Main theorem)

Let A be a Noetherian local ring with $d = \dim A \ge 2$. Suppose that A is quasi -unmixed. Let $I \ (\neq A)$ be an ideal of A with $\operatorname{ht}_A I \ge 2$ and $I \cap W(A) \neq \emptyset$. Set B = I : I. Then TFAE.

- (1) B is a Gorenstein ring.
- (2) ∃K_A and I is a trace ideal in A s.t. (i) K_A is a CM A-module and (ii) there exists an exact sequence

$$0 \rightarrow A \rightarrow K_A \rightarrow C \rightarrow 0$$
 s.t. $IC = (0)$.

(3) depth_A B = d, $\exists K_A$, and $B \cong K_A$ as an A-module.

When this is the case, A is unmixed, $B = \widetilde{A}$, and $\mathfrak{a} = A : B$ is a trace ideal in A with $B = \mathfrak{a} : \mathfrak{a}$.

Corollary 4.5

Let A be a Noetherian local ring with $d = \dim A \ge 2$. Let $I \ (\neq A)$ be an ideal of A with $ht_A I \ge 2$ and $I \cap W(A) \ne \emptyset$. Set B = I : I. Then TFAE.

- (1) B is a Gorenstein ring, A is a homomorphic image of a CM ring, and Min A = Assh A.
- (2) ∃K_A and I is a trace ideal in A s.t. (i) K_A is a CM A-module and (ii) there exists an exact sequence

$$0 \rightarrow A \rightarrow K_A \rightarrow C \rightarrow 0$$
 s.t. $IC = (0)$.

(3) depth_A B = d, $\exists K_A$, and $B \cong K_A$ as an A-module.

When this is the case, A is unmixed, $B = \widetilde{A}$, and $\mathfrak{a} = A : B$ is a trace ideal in A with $B = \mathfrak{a} : \mathfrak{a}$.

5. Gorenstein Rees algebras

Let (A, \mathfrak{m}) be a Noetherian local ring with $d = \dim A \ge 2$ and $t = \operatorname{depth} A \ge 1$. For each ideal I of A, we set

$$\mathcal{R}_{A}(I) = A[It] = \sum_{n \ge 0} I^{n}t^{n} \subseteq A[t]$$

and call it the Rees algebra of I.

Example 5.1 (Hochster-Roberts)

Let $A = k[[x^2, y, x^3, xy]] \subseteq k[[x, y]]$ and $Q = (x^2, y)$. Then A is not CM, but

$$\mathcal{R}_{\mathcal{A}}(Q^2) = \mathcal{A}[Q^2t] = \mathcal{A}[x^4t, x^2yt, y^2t] \subseteq \mathcal{A}[t]$$

is a Gorenstein ring.

Theorem 5.2 (Shimoda)

Suppose dim A = 2 and depth A = 1. Let Q = (a, b) be a parameter ideal of A. Then TFAE.

(1) $\mathcal{R}_A(Q^2)$ is a Gorenstein ring.

(2) (a)
$$a, b \in W(A)$$
,
(b) $[(a) : b] \cap [(b) : a] = (a) \cap (b)$, and
(c) $A/[(ab) + a[(a) : b] + b[(b) : a]]$ is a Gorenstein ring

Question 5.3

Let Q be a parameter ideal of A. When is $\mathcal{R}_A(Q^d)$ a Gorenstein ring?

 If A is a CM local ring, then R_A(Q^d) is NOT a Gorenstein ring. (Goto-Nishida, Goto-Shimoda, Ikeda)

Theorem 5.4 (Goto-lai)

Suppose $H^i_{\mathfrak{m}}(A) = (0)$ for $\forall i \notin \{1, d\}$ and $H^1_{\mathfrak{m}}(A)$ is a finitely generated *A*-module. Let $Q = (a_1, a_2, \dots, a_d)$ be a parameter ideal of *A*. Then TFAE.

(1) $\mathcal{R}_A(Q^d)$ is a Gorenstein ring.

(2)
$$H^1_{\mathfrak{m}}(A) \neq (0), r_A(H^1_{\mathfrak{m}}(A)) = 1, and (0) :_A H^1_{\mathfrak{m}}(A) = \sum_{i=1}^d U(a_i A).$$

When this is the case, \tilde{A} is a Gorenstein ring.

Theorem 5.5

Let (A, \mathfrak{m}) be a Noetherian complete local ring s.t. $d = \dim A \ge 2$, depth A = 1, and $\operatorname{Min} A = \operatorname{Assh} A$. Let I be an \mathfrak{m} -primary ideal of A. We set B = I : I and $\mathfrak{a} = A : B$, and assume the following conditions.

- (1) B is a Gorenstein ring.
- (2) $A \neq B$ and $r_A(B/A) = 1$

(3)
$$\mathfrak{a} = (a_1, a_2, \ldots, a_d)B$$
 for some $a_1, a_2, \ldots, a_d \in \mathfrak{m}$.

Then, $B = \mathfrak{a} : \mathfrak{a}$ and $\mathcal{R}_A(Q^d)$ is a Gorenstein ring, where $Q = (a_1, a_2, \dots, a_d)$.

(Proof) We have $B = \mathfrak{a} : \mathfrak{a}$. As $I \cdot (B/A) = (0)$, applying $H^{i}_{\mathfrak{m}}(*)$ to the sequence $0 \to A \to B \to B/A \to 0$

we get $H^1_{\mathfrak{m}}(A) \cong B/A$ and $H^i_{\mathfrak{m}}(A) = (0)$ for $\forall i \notin \{1, d\}$. Hence

$$(0):_{\mathcal{A}} H^1_{\mathfrak{m}}(\mathcal{A}) = \mathfrak{a} \quad \text{and} \quad \mathrm{r}_{\mathcal{A}}(\mathsf{H}^1_{\mathfrak{m}}(\mathcal{A})) = 1.$$

Since depth_A B = d and a_1, a_2, \ldots, a_d forms a system of parameters in A, the sequence a_1, a_2, \ldots, a_d is B-regular. Hence

$$a_i \in W(A)$$
 and $a_iB \subseteq A$ for $1 \leq orall i \leq d$

so that $B = \widetilde{A} \subseteq \frac{A}{a_i}$, whence $B = \frac{U(a_i A)}{a_i}$. Hence

$$\mathfrak{a} = \sum_{i=1}^{d} a_i B = \sum_{i=1}^{d} U(a_i A).$$

Consequently, $\mathcal{R}_A(Q^d)$ is a Gorenstein ring.

6. Examples

Let

- (S, \mathfrak{n}) a Gorenstein complete local ring with $d = \dim S \ge 2$
- S contains a field k
- $q = (a_1, a_2, \dots, a_d)$ a parameter ideal of S s.t. $q \neq n$
- A = k + q

Then, A is a subring of S, and q is a maximal ideal in A. We have

$$\ell_A(S/A) = \ell_A(S/\mathfrak{q}) - 1 < \infty.$$

Therefore, S is a finitely generated A-module, so that

A is a Noetherian complete local ring with dim A = d and depth A = 1.

Theorem 6.1

If $\ell_{S}(S/\mathfrak{q}) = 2$, then $\mathcal{R}_{A}(Q^{d})$ is a Gorenstein ring, where $Q = (a_{1}, a_{2}, \dots, a_{d})A$.

Example 6.2

Let $S = k[[X_1, X_2, ..., X_d]]$ $(d \ge 2)$ and $q = (X_1^2, X_2, ..., X_d)S$. Then $\mathcal{R}_A(Q^d)$ is a Gorenstein ring where A = k + q and $Q = (X_1^2, X_2, ..., X_d)A$.

3

Let

- B = k[[t, s]] the formal power series ring over a field k
- $P = k[[H]] \subsetneq V = k[[t]]$, where H is a symmetric numerical semigroup
- $\mathfrak{c} = P : V = t^c V, \ 0 < c \in H$
- $A = P + sB \subseteq B$
- $\mathfrak{a} = A : B = \mathfrak{c} + sB = (t^c, s)B$

Then

A is a Noetherian complete local ring with dim A = 2 and depth A = 1.

We set $Q = (t^c, s)$. Then, Q is a parameter ideal of A.

Theorem 6.3

The Rees algebra $\mathcal{R}_A(Q^2)$ is a Gorenstein ring.

< ロ > < 同 > < 三 > < 三 >

Let

• S a Gorenstein complete local ring with
$$d = \dim S \ge 2$$

•
$$q = (a_1, a_2, \dots, a_d)$$
 a parameter ideal of S

•
$$A = S \times_{S/\mathfrak{q}} S = \{(x, y) \in S \times S \mid x \equiv y \mod \mathfrak{q}\}$$

Then

A is a Noetherian complete local ring with dim A = d and depth A = 1

Let $\alpha_i = (a_i, a_i) \in A$ for each $1 \leq i \leq d$ and set $Q = (\alpha_1, \alpha_2, \dots, \alpha_d)$. Then, Q is a parameter ideal of A.

Theorem 6.4

The Rees algebra $\mathcal{R}_A(Q^d)$ is a Gorenstein ring.

Example 6.5

Let $U = k[[X_1, X_2, ..., X_d, Y_1, Y_2, ..., Y_d]]$ $(d \ge 2)$ and set

$$A = U/[(X_1, X_2, \ldots, X_d) \cap (Y_1, Y_2, \ldots, Y_d)] \cong S \times_k S$$

where $S = k[[X_1, X_2, ..., X_d]]$. For each $1 \le i \le d$, let z_i denote the image of $X_i + Y_i$ in A. Then $\mathcal{R}_A(Q^d)$ is a Gorenstein ring

where $Q = (z_1, z_2, ..., z_d)$.

Thank you for your attention.

э

▶ < ∃ ▶</p>

< 日 > < 同 >